Eos Family Console Programming

Level 3: Advanced Programming

Version 2.2 Rev. A

www.etcconnect.com/education
Table of Contents

- PURPOSE OF THE CLASS .. 4
- ADVANCED DISPLAYS ... 5
- SNAPSHOTS .. 6
- PATCH – COPY TO & MOVE TO .. 7
- FIXTURE PROFILES .. 8
- DATABASE & KEYWORDS ... 10
- QUERY .. 11
- ADVANCED MANUAL CONTROL .. 13
- FILTERS .. 21
- MAKE NULL .. 22
- MAKE MANUAL & RECORD ONLY .. 23
- PALETTE & PRESET MODIFIERS ... 24
- MULTIPART CUES ... 27
- MULTIPLE CUE LISTS .. 28
- CUE LIST INDEX .. 31
- ADDITIONAL CUE FUNCTIONS ... 33
- BLIND NAVIGATION AND EDITING ... 34
- MACROS ... 37
- INTERMEDIATE MAGIC SHEETS .. 39
- IMPORTANT CONCEPTS ... 44
- APPENDIX 1 – CUSTOM FIXTURE PROFILES .. 48
- APPENDIX 2 - LIGHTWRIGHT IMPORT ... 54

ETC permits the reproduction of materials in this manual only for non-commercial purposes. All other rights are reserved by ETC.
Purpose of the Class

This class is intended for people who are well versed in Eos Family terminology, already know the layout of the desk, and are experienced conventional and intelligent fixture programmers. This class is intended to build on your knowledge, and make you faster.

LEARNING OBJECTIVES:

After completing this class, users should be able to:

• Use, store, and recall advanced displays
• Use advanced patch functions, such as copying and moving show data, editing fixture profiles, and creating keywords
• Use advanced selection and manual control features in controlling channels
• Define and use Highlight, Lowlight, and custom RemDim
• Use the fan function on encoders, the command line, and for references
• Control multiple-intensity fixtures
• Apply and store filters
• Use manual playback functions like Make Null, Make Manual, and Capture
• Use advanced palette and preset modifiers
• Use advanced cues, like Multipart, and multi-list
• Create and use Macros
• Utilize intermediate Magic Sheet skills

SYNTAX ANNOTATION

• **Bold** Browser menus
• [Brackets] Facepanel buttons
• {Braces} Softkeys and direct selects
• <Angle brackets> Optional keys
• [Next] & [Last] Press & hold simultaneously

• **Play icon** Link to video on ETC’s YouTube Channel - ETCVideoLibrary

HELP

Press and hold [Help] and press any key to see:

• the name of the key
• a description of what the key enables you to do
• syntax examples for using the key (if applicable)

As with hard keys, the “press and hold [Help]” action can be also used with softkeys and clickable buttons

THIS CLASS USES THE CONTENT FROM THE LEVEL 2 SHOW FILE. BEFORE BEGINNING, PLEASE OPEN THE MOST RECENT VERSION OF THE “MUSIC THE MUSICAL LEVEL 2 – COMPLETE” SHOW FILE.
Advanced Displays

FLEXI VIEW CHANNELS

It is possible to make a custom Flexi view with a channel selection.

```
[Group] [8] [+] [Group] [9] Press & Hold [Flexi] {View Chans}
```

Auto-completes the command line, makes the channel selection a Flexi State.

NOTE: This will remain the View Channels state until you change the selection. There is not a way to clear the View Channels Flexi at this time.

PSD TIME COUNTDOWN

When Playback Status Display (PSD) Time Countdown is enabled, the PSD will show each timing element counting down as a cue executes. When it is disabled, it will show the recorded times, and only the duration will count down.

```
[Displays] {Setup} {Desk Settings} {Displays} {PSD Time Countdown} Enabled
```

Enables PSD Time Countdown.

```
Go to Live, and play back a cue with multiple timing elements.
```

Watch the individual timing elements count down.

```
{PSD Time Countdown} Disabled
```

Disables PSD Time Countdown, making the PSD only show recorded values that do not count down.

NOTE: Pressing and Holding the [Time] Display button will temporarily show the recorded times.

ABOUT “ABOUT”

“About” displays detailed information about nearly every target type in the console.

```
[About]
```

On a clear command line, About shows you information about the console

```
[101] [Enter]
```

Shows detailed info about channel attributes, including Lamp Controls.

```
[Address] [2] [/] [1] [Enter]
```

Shows patch info, library data, etc.

```
[Cue] [4] [Enter]
```

Shows timing, flags, status, and moves.

```
[Color Palette] [2] [Enter]
```

Shows label, values and palette usage.

```
[Preset] [1] [Enter]
```

Shows label, values and preset usage.

```
[Sub] [2] [Enter]
```

Shows level, type, timing and mapping.

ADVANCED DISPLAYS BEST PRACTICES

- You can toggle the PSD Time Countdown setting via Macro, so it is easier to switch in and out of modes on the fly.
- Flexi View Channels, PSD Time Countdown, and About are all discrete to each device, so users can have their own advanced displays.
Snapshots store layouts so that you can recall them quickly. Snapshots are stored in the show file, and can be recalled on any Eos Family or Nomad device on the network. Control areas that may be stored in a snapshot are:

- **Visible Workspaces** – records the layout and configuration of the currently displayed workspaces on all monitors, including frame layout, tab population, and in-tab configuration (such as columns, flexi state, etc.).
- **All Workspaces** – records the layout and configuration of all workspaces on all monitors, as well as which workspaces are active on each monitor.
- **Faders** – captures the current state of all the faders including the contents of all faders including the Master Playback fader pair, on all pages, active page, and pending cues.
- **Encoders** – records the current page and flexi state of the encoder module.
- **Filters** – records the current state of Filters.

RECORDING SNAPSHOTS

```
[Record] [Snapshot] [1]        [Enter]
```
Opens snapshot selection window and records the snapshot.

```
Rearrange some of the monitor layouts.
[Record] [Snapshot] [2]
Touch {All Workspaces}
[Enter]
```
Opens snapshot selection window.
Selects all workspaces, regardless if they are currently displayed.
Records the snapshot.

RECALLING SNAPSHOTS

```
[Snapshot] [1] [Enter]
```
Recalls the content of snapshot 1.

```
[Snapshot] [Snapshot]
```
Opens the Snapshot list.

SNAPSHOTS BEST PRACTICES

- Record Snapshots into background macros so you can change displays without interrupting your channel selection.
- Place your snapshots (like a Direct Select or a Magic Sheet object) in the same location on your displays so they are easy to find.
- Snapshots that include Faders will record the pending cue for any populated cue list, including on the Master Playback. This means when they are recalled, the pending cue will be loaded, potentially interrupting normal playback.
- Snapshots that include Faders do not store fader attribute states, such as Timing Disable, Rate, etc.
COPY CHANNELS IN PATCH

When you copy a channel in Patch, only the patch information get copied to the target channel(s) – type, labels, all attributes, interface, and database information.

- **In Patch, [111] [Copy To] [116] [Enter]**
 - Takes channel 111 and copies only the patch information (no address) to 116.

To copy the data recorded in the show file for the channel, use softkey modifiers. This includes data in cues, submasters, palettes and presets, effects, and groups.

- **[111] [Copy To] [117] {Plus Show} [Enter]**
 - Takes channel 111 and copies the patch and all show data to channel 117.

- **[111] [Copy To] [118] {Only Show} [Enter]**
 - Takes channel 111 and copies only the show data to channel 118, and does not copy any patch information.

 Notice that nothing shows in the Patch display. Will write over any existing information.

To copy just the database information for the channel, use softkey modifiers.

- **[111] [Copy To] [119] {Only Text} [Enter]**
 - Takes channel 111 and copies only the patch database information to channel 119.

MOVE CHANNELS IN PATCH

When you move a channel in patch, you are essentially renaming it from one channel number to another. All show file information and patch information get moved to the target channel, as well as park information for the channel(s).

- **[116] [Copy To] [Copy To] [120] [Enter]**
 - Moves channel 116’s show and patch information to channel 120.

NOTE:

- Certain show information will not get copied or moved when executed through Patch. This includes channel numbers called in macros, and channel objects in Magic Sheets and Pixel Maps.

- When copying a channel, park information from the origin channel does not copy to the target channel(s). However, when moving a channel, the move will be made in Park as well.
Fixture Profiles

Eos family consoles have an extensive library of fixtures, however sometimes users wish to customize or create their own. The fixture profile manager will allow you to copy and create fixtures. You can name the fixture, assign all necessary parameters, define the address and operational range of those parameters, and set lamp controls.

The fixture editor is accessible from patch. Once a fixture has been edited, it is stored in the show file. It is not added to the fixture library stored on the desk. To share profiles, create a new show and merge the fixture profiles.

TO OPEN THE FIXTURE PROFILE MANAGER:

In {Patch} with a clear command line, {Fixtures}

Opens the Fixture Editor which shows all the fixture profiles in current show.

EDITING AN EXISTING FIXTURE PROFILE

Eos will not allow you to edit Library Profiles. You must first copy the profile, and edit the copy.

Highlight the fixture profile “ColorBlast 12”, press {Copy}

Copies the library profile to an editable profile.

With “ColorBlast 12 Copy(1)” selected, press [Label] [Label]. Label the fixture profile “LED Zoom”, press [Enter]

Rename the fixture profile

With “LED Zoom” selected, press {Edit}

Allows you to edit the profile. Add, remove, or modify parameters as necessary.

Press {New}

Adds a new parameter to the fixture profile – auto-populates

With the new Parameter selected, press {Parameters}

Opens the Parameters area

Find and press {Zoom}

Adds the zoom parameter to the fixture profile

When finished editing, press {Return}

Saves changes, and exits the editor

Press {Return} again to go back to Patch

NOTE: To create a completely new fixture profile, reference Appendix 1 in this workbook.
UPDATING Fixture Profiles

Whenever you patch a fixture, the profile for that fixture is saved into the show file. When the show plays back, the desk uses that profile to understand how to send the stored show data to the fixture.

Sometimes, fixture profiles are updated with new software (often included in a console software update). These library changes are not auto-updated to the show file, as it may have a significant impact on how a show plays back.

BEFORE YOU UPDATE TO THE LATEST FIXTURE PROFILE, THINK ABOUT THESE THINGS:

- Always test the update in a copy of the show file. Library updates cannot be undone.
- Leave time to test the playback of the fixture. Make sure the fixture plays back as expected through all show targets, including cues and subs.
- Only update if there is a reason – like if you updated the firmware on a fixture. If you see a fixture update and the show is playing back fine, you likely don’t need to update anything. Don’t fix what isn’t broken.
- Check the Eos Family release notes to assess library changes.

In the Fixture Profile Manager, with a fixture selected:

- If there is no library update available, the **Update Lib** softkey will be greyed out.
- If there is a library update available, the **Update Lib** softkey will be white. After touching it, and accepting the warning message, the old profile stored in the show file will be replaced with the version in the software on the desk. **This cannot be undone.**

MERGING CUSTOM Fixture Profiles

The console allows you to Merge in fixture profiles from another show file. Go to Browser -> Merge and select the show file. Then select “Fixtures.”

CUSTOM Fixture Profile Best Practices

- Many programmers will create custom profiles with the same content, but with different names to delineate fixture types. Creating profiles for “S4 19 Degree”, “S4 26 Degree”, etc. can help identify fixture types with the [Query] function. They may also indicate different scroller loads, gobo loads, or fixture wattages.
- Sometimes, fixture profile documentation is incomplete, misleading, or out of date. If you are going to be creating a custom profile for a fixture, allow yourself ample time with the real fixture to tech it out.
- Bring your custom fixtures with you! Merge your favorite modified or custom profiles before you patch to save doing the same work over and over.
Database & Keywords

Each part of each channel can have up to one note and up to four keywords defined. These can be used to inform operators locally regarding attributes of the fixtures, to keep work notes, or to assist with Query operations. Notes can accept paragraph-form text and are not utilized when using the [Query] function. Keywords can be defined in notation-style and can be used with [Query].

NOTES AND KEYWORDS ARE FOUND IN THE DATABASE AREA OF PATCH:

- In {Patch}, {Database}
 - Navigates to the Database area of Patch

ADDING A NOTE TO A CHANNEL OR PART

- [1] {Note} needs new gel [Enter]
 - Selects channel 1 and adds the note.
- [26] [Part] [2] {Note} scroller needs calibration [Enter]
 - Selects part 2 of channel 26 and adds the note to it

ADDING KEYWORDS TO CHANNELS OR PARTS

- [11] [Thru] [16] (Text1)
 - Selects channels 11 through 16 and opens the Keyword dialogue.
- {New Keyword} {575W} [Enter]
 - Adds the new keyword to the database and automatically assigns it to Text1.
- [11] [+][12] {Text2} {New Keyword} R65 [Enter]
 - Puts the gel colors in Text2.
- [13] [+][14] {Text2} {New Keyword} R39 [Enter]
 - Puts the gel colors in Text2.
- [15] [+][16] {Text2} {New Keyword} R13 [Enter]
 - Puts the gel colors in Text2.
- [11] [+][13] [+][15] {Text3} {New Keyword} SR Tower [Enter]
 - Puts the fixture position in Text3.
- [12] [+][14] [+][16] {Text3} {New Keyword} SL Tower [Enter]
 - Puts the fixture position in Text3.

KEYWORD BEST PRACTICES

- Keywords are helpful if they are concise and consistent. Having keywords such as "S4 19deg" is easy to understand, but having another keyword "S4-19" will make it difficult to use [Query] to find channels that you want. Re-use keywords that you have already established for similar fixtures.
- Use Keywords consistently field by field over multiple channels. For example, you may want Text1 to be the fixture type for all channels, Text2 to be positon, Text3 to be the gel or color, and Text4 to be the gobo. This scenario would allow you to find conventional channels with like-attributes, but can also assist an electrics staff in easily maintaining a long-running show.

NOTE: Reference Appendix 2 in this workbook for LightWright imports.
Query

Query is used to find and select channels that meet conditional criteria and keywords – ending in a channel selection.

```
Back in Live, [Go To Cue] [101] [Enter]
```

Best viewed in Live Channel rather than Live Table format.

```
[Group] [1] [At] [50] [Time] [7] [Enter]
[Group] [2] [At] [75] [Enter]
[Group] [7] [At] [10] [Thru] [Full] [Enter]
[Record] [102] [Enter]
```

Set up some channels to use with Query

Basic Query

```
[Query] [At] [75] [Enter]
```

Selects all channels currently at 75%

```
[Query] [At] [50] [Enter] [At] [Full] [Enter]
```

Selects all channels currently at 50%, and then places them at Full.

Query with Keywords

```
[Query] {575W} [Enter]
```

Keywords displayed in CIA - selects all channels with a 575w lamp.

```
[Query] {SL Tower} [Enter]
```

Selects all channels in the SL Tower.

```
[Query] {SR Tower} {R13} [Enter]
```

Selects all channels in the SR Tower that are yellow.

Query Softkeys

{Is In}

The specified channels or parameters are currently at a specific value:

```
[Query] {Is In} [Color Palette] [1] [Enter]
```

Selects all channels currently in Color Palette 1.

```
[Query] {Is In} [Color Palette] [2] [At] [Full] [Enter]
```

Selects all channels in Focus Palette 2 with an intensity of Full.

```
[Query] {Is In} {Cyan} [100] [Enter]
```

Selects all channels with a Cyan value of 100.

{Isn’t In}

The specified channels or parameters are not currently at a specific value:

```
[Group] [8] [Query] {Isn’t In} [Color Palette] [1] [Enter]
```

Selects any channels in group 8 that is not in Color Palette 1.

```
[Select Active] [Query] {Isn’t In} [Time] [7] [Enter]
```

Selects all active channels that do not have a time of 7.
{CAN BE}

Items that have stored in a particular target but not currently in that target:

[Query] {Can Be} [Focus Palette] [1] [Enter]

Selects channels that have data stored in Focus Palette 1 but are not in FP1 now.

[Query] {Can Be} [Color Palette] [1] {Isn't In} [Color Palette] [1] [Enter]

Selects channels that have data stored in CP1 but currently is not in CP1.

{CAN’T BE}

Items that do not have data stored in a particular target will be selected:

[Query] {Can’t Be} [Preset] [1] [Enter]

Selects channels that do not have information stored in Preset 1.

{OR}

Allows for overlapping arguments and selects channels that are true of either specified condition:

[Query] [At] [Full] {Or} [At] [75] [Enter]

Selects channels that are at a level of full or at 75%.

[Query] {Is In} [Color Palette] [1] {Or} {Is In} [Preset] [1] [Enter]

Selects channels that are currently in Color Palette 1, and those that are currently in Preset 1.

{MOVES ONLY}

Finds channels that have move instructions stored:

[Query] {Moves Only} [Enter]

Selects all channels that have move instructions in the current cue.

{UNPATCHED}

Finds channels that are not patched:

[Query] {Unpatched} [Enter]

Selects all channels that are not patched.

[Query] {Unpatched} {Is In} [Cue] [1] [Thru] [Enter]

Looks for anything that has moved in the show but is unpatched.

QUERY BEST PRACTICES

- Query results are not altered by Flexi – it will select channels that are true even if they are not in the current flexi view.
- Query works great in Blind Spreadsheet.
- Save frequently used Queries as macros for quick dynamic channel selection.
Advanced Manual Control

RemDim

RemDim can be used to take all active channels that are not in a selection, and force them to a lower level.

Absolute RemDim

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] [Thru] [9] [Full] [Full]</td>
<td>Turns on channels 1 through 9.</td>
</tr>
<tr>
<td>[1] [Thru] [3] [At] [50] [RemDim] [Enter]</td>
<td>Puts 1 through 3 at 50, and forces all other channels to 0.</td>
</tr>
<tr>
<td>[4] [Thru] [9] [At] [10] [Thru] [30] [Enter]</td>
<td>Sets channels at different levels.</td>
</tr>
<tr>
<td>[Group] [8] [At] [50] [RemDim] [20] [Enter]</td>
<td>Puts 51 through 67 at 50, and any channels that are above 20 to 20. All values below 20 stay at their previous value.</td>
</tr>
<tr>
<td>[RemDim]</td>
<td>Toggles RemDim off – only works immediately after a RemDim command is completed.</td>
</tr>
</tbody>
</table>

Proportional RemDim

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] [Thru] [9] [At] [75] [Enter]</td>
<td>Puts channels 1 through 9 at 75%.</td>
</tr>
<tr>
<td>[11] [Thru] [16] [At] [75] [RemDim] [/] [50] [Enter]</td>
<td>Puts channels 11 through 16 at 75%, and puts all other channels at 50% of their previous level.</td>
</tr>
</tbody>
</table>

Highlight & Lowlight

Highlight mode allows you to put fixtures into a temporary, pre-defined state. You can use the desk’s defaults for Highlight, or define your own Highlight, Lowlight, and Highlight RemDim behaviors.

Creating Highlight & Lowlight Presets

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Go To Cue] [Out] [Enter]</td>
<td>Selects all of the moving lights.</td>
</tr>
<tr>
<td>[Select Last] [-] {Focus} [Record] [Preset] [9997] [Label] Highlight [Enter]</td>
<td>Records just the color and beam parameters into Preset 9997.</td>
</tr>
<tr>
<td>[Group] [16] [At] [50] [Enter], make them all dark blue</td>
<td></td>
</tr>
<tr>
<td>[Select Last] [-] {Focus} [Record] [Preset] [9998] [Label] Lowlight [Enter]</td>
<td>Records just the color and beam parameters into Preset 9998.</td>
</tr>
</tbody>
</table>
DEFINING HIGHLIGHT, LOWLIGHT AND HIGHLIGHT REMDIM LEVELS

When in Highlight mode, there are three channel groupings that can be defined with presets or hard values.

[Displays] {Setup} {Desk} {Manual Control}

{Highlight Preset} [9997] [Enter] Defines Preset 9997 as the location for Highlight data.

{Lowlight Preset} [9998] [Enter] Defines Preset 9998 as the location for Lowlight data.

{Highlight RemDim} [20] [Enter] Puts in a value for Highlight RemDim.

NOTE: You can define Highlight RemDim as a hard percentage value (like the example above), a [/] value (percentage) or as a preset.
To define a preset, type {Highlight RemDim} {Preset} [XX] [Enter]. You can disable Highlight RemDim by typing {Highlight RemDim} [Enter].

USING HIGHLIGHT MODE

[Live] [Go To Cue] [102] [Enter] Go back to Live and into a cue.

[High]/(Highlight) [Enter] Puts the desk into Highlight mode. All levels drop to Highlight RemDim value.

[Group] [16] [Enter] … [Next], [Next], [Next] Puts the selected channel into its Highlight look, puts the half-selected channels in their Lowlight look, and puts all unselected channels at their Highlight RemDim level.

Notice that 110 is in Highlight Preset Value, rest of Group 16 is using Lowlight Preset, and all channels outside of the selection are using the Highlight RemDim level.

Place all channels in Group 16 downstage center

[Select Last] [Record] [Focus Palette] [11] [Enter] Selects all the channels, putting them all in the Highlight look. Then you can record all the movers into the focus palette, and start on the next position.

[High]/(Highlight) Exits Highlight mode. All channels that were not touched in highlight mode return to their previous values.

HIGHLIGHT & LOWLIGHT BEST PRACTICES

- Highlight is a great way to quickly build up focus palettes for a group of fixtures.
- Highlight can be helpful to see lights in a rig when there is ambient light you cannot control, like work lights, or while programming outdoors.
- With Highlight RemDim disabled, all channels not in the selected group will remain at their previous values. So you’ll have light on stage.
CUSTOM DEFAULT PRESETS

LIVE REMDIM PRESET

Assign a level or Preset for a Live RemDim action to utilize.

[1] [Thru] [9] [At] [25] [Thru] [80] [Enter]

[Select Last] [Record] [Preset] [9996] [Label] Live RemDim [Enter]

Go to Setup – [Displays] {Setup} {Desk} {Manual Control}

{Live RemDim Level} [Preset] [9996] [Enter]

[Live] [Sneak] [0] [Enter]

[1] [Thru] [9] [+1] [11] [Thru] [16] [Full] [Full]

[Group] [6] [At] [Full] [RemDim] [Enter]

[RemDim]

Create the look for the Live RemDim Preset.

Define the Live RemDim Preset in Setup.

Remove the manual preset values on stage.

Bring up channels to full, some in the Live RemDim Preset, some not.

The selected channels go to full, the channels with values stored in the Live RemDim Preset go to those values, and channels without data stored in the Live RemDim Preset are left untouched.

While channels are still selected, RemDim again will undo the RemDim action.

HOME PRESET

Home Presets are a quick way to redefine home values for non-intensity parameters.

[Go To Cue] [Out] [Enter]

[Group] [12] [Full] [Full], tilt up on stage

[Select Last] [Focus] [Record] [Preset] [9999] [Label] Home [Enter]

[Sneak] [0] [Enter]

[Displays] {Setup} {Show} {Show Settings}

{Home Preset} [9999] [Enter]

[Live], [Group] [12] [Full] [Full]

Pan & Tilt the units, drop in some color

[Select Last] [Home] [Enter]

Move the fixtures to a place where you want them to be at their home position

Create a preset for the home value

Clear the manual values

Go into setup

Define the home preset that you created

Bring the channels to full.

Change the fixtures

Channels go back to the new home.

CUSTOM DEFAULT PRESETS BEST PRACTICES

- A Home command will use data stored in the home preset. If there is no data stored for a parameter or channel, it will use the console’s default home values for that parameter.
In Eos Family software, Fan is a mode. When enabled, any parameter that is moved will spread evenly across the selection based on the styles below.

Fan Parameters

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Group] [12] [Full] [Full] [Focus Palette] [2] [Enter]</td>
<td>Enables Fan mode</td>
</tr>
<tr>
<td>Move the Pan encoder</td>
<td>First channel is anchor (stationary), and others fan relative to the first channel.</td>
</tr>
<tr>
<td>Move the Cyan encoder</td>
<td>Look at beams – white to Cyan across the fixtures</td>
</tr>
<tr>
<td>Move the Level Wheel</td>
<td>Again look at beams - watch intensity</td>
</tr>
<tr>
<td>[111] [Thru] [115] [Focus Palette] [2] [Enter]</td>
<td>Sets the fixtures back to focus palette 2.</td>
</tr>
<tr>
<td>[Fan] [Center] [Enter]</td>
<td>Center channel is anchor, and channels fan around it.</td>
</tr>
<tr>
<td>Move the Pan encoder</td>
<td>Bring up the cyc fixtures.</td>
</tr>
<tr>
<td>[Group] [9] [Full] [Full]</td>
<td>Roll Red out and then Blue out</td>
</tr>
<tr>
<td>[Fan] [Mirror Out] [Repeat] [3] [Enter]</td>
<td>Watch how the fixtures respond now.</td>
</tr>
</tbody>
</table>

When {Fan} is pressed, the following fan styles softkeys appear:

- **{Center}** – The middle channel in the order is set as the start and will remain unchanged, and the first and last channels will change in different directions.
- **{Reverse}** – The selected channel order is reversed before applying the fan.
- **{Mirror Out}** – The middle channel in the selected order is used as the starting channel and the first and last channels in the order are the end channels.
- **{Random}** – The selected channels are put in a random order before fan is applied.
- **{Repeat}** – The number of channels that are fanned before the pattern is repeated.
 - 1] [Thru] 12] [At] 50] [Thru] 70] [Fan] [Repeat] [3] [Enter] - sets channels 1,4,7, and 10 at 50%, 2,5,8, and 11 at 60%, and 3,6,9, and 12 at 70%.
 - **{Cluster}** – The channels are put into collections, which contains channels with all of the same value.
 - 1] [Thru] 12] [At] 50] [Thru] 80] [Fan] [Cluster] 4] [Enter] - sets channels 1 through 3 at 50%, 4 through 6 at 60%, 7 through 9 at 70%, 10 through 12 at 80%.
Command Line Fan

It is possible to take a range of channels, and quickly fan a range of values over them – such as intensity.

<table>
<thead>
<tr>
<th>Command Line Fanning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>[Go To Cue] [Out] [Enter]</code></td>
<td>Takes us to a clean stage</td>
</tr>
<tr>
<td><code>[Group] [8] [At] [10] [Thru] [Full] [Enter]</code></td>
<td>Fans the intensities across the channel selection and defined intensity range.</td>
</tr>
<tr>
<td><code>[Group] [20] [At] [10] [Thru] [Full] [Enter]</code></td>
<td>Channel selection matters when using command line fanning.</td>
</tr>
<tr>
<td><code>[Group] [8] [At] [10] [Thru] [Full] [Fan] {Mirror Out} [Enter]</code></td>
<td>Use Fan on the command line to access modifier softkeys.</td>
</tr>
<tr>
<td><code>[Select Last] [At] [10] [Thru] [Full] [Fan] {Mirror Out} {Cluster} [2] [Enter]</code></td>
<td>Every other channel is selected from the center out.</td>
</tr>
</tbody>
</table>

Fan References

Like fanning absolute values on the command line, it is possible to fan references over a range of channels.

<table>
<thead>
<tr>
<th>Reference Fanning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>[Group] [8] [Full] [Full]</code></td>
<td>Resets to full intensity</td>
</tr>
<tr>
<td><code>[Select Last] [Color Palette] [1] [Thru] [7] [Enter]</code></td>
<td>Fans the color palettes across the channels, and repeats after all palettes are used.</td>
</tr>
<tr>
<td><code>[Select Last] [Color Palette] [1] [Thru] [7] [Fan] {Mirror Out} [Enter]</code></td>
<td>Starts at the center channel, and mirrors the color palettes out, repeating after all palettes are used.</td>
</tr>
<tr>
<td><code>[Select Last] [Color Palette] [1] [Thru] [7] [Fan] {Mirror Out} {Cluster} [4] [Enter]</code></td>
<td>Starts at the center channel, and mirrors the color palettes in groups of 4. Only the first 3 palettes are used before running out of channels.</td>
</tr>
</tbody>
</table>

Fan Discrete Timing

Similarly to command line fanning, ranges can be used to fan discrete time and delays.

<table>
<thead>
<tr>
<th>Discrete Timing</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>[1] [Thru] [9] [Time] [1] [Thru] [5] [Enter] Look at Discrete Timing</code></td>
<td>Time can be fanned - calculates timing across the selection for the times given.</td>
</tr>
<tr>
<td>Note: [Shift] & [Time]</td>
<td></td>
</tr>
<tr>
<td><code>[Group] [2] [Delay] [8] [Thru] [3] [Enter]</code></td>
<td>Fanning a delay. Lower channels have longer delays.</td>
</tr>
<tr>
<td><code>[Group] [9] [Time] [1] [Thru] [5] {Mirror Out} [Enter]</code></td>
<td>Fan softkeys appear when a discrete time range is on the command line.</td>
</tr>
</tbody>
</table>
MULTIPLE INTENSITY FIXTURES

When a profile with multiple intensity parameters is patched, Eos automatically creates a master intensity parameter. This masters all of the other intensity parameters on the fixture. By default, the home of each intensity parameter is 100.

Patching Multiple Intensity Fixtures

In Patch, add the following fixtures:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Universe</th>
<th>Address</th>
<th>Manufacturer</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>151</td>
<td>3</td>
<td>201</td>
<td>SGM</td>
<td>SP 6 – 6ch</td>
</tr>
<tr>
<td>152</td>
<td>3</td>
<td>207</td>
<td>SGM</td>
<td>SP 6 – 6ch</td>
</tr>
</tbody>
</table>

Mastering All Intensity Parameters

- **[Live]**
 - Best viewed in Live Table view
 - Sets all lamps in the fixture to full.

- **Roll Level Wheel**
 - Masters all lamps together under the virtual intensity parameter.

Setting Individual Intensity Parameters

- **[151] {Intens 3} [50] [Enter]**
 - Sets intensity 3 of channel 151 to 50%.

- **[152] [Enter] [Intensity] or [Custom] encoder navigation button**
 - Roll {Intens 6} encoder out
 - Rolls the intensity for lamp 6 out.

MULTIPLE INTENSITY FIXTURE BEST PRACTICES

- Intensity Palettes are quick ways to get to known lamp intensity configurations. If you only want 3 lamps on, for example, make sure to record the off lamps into the Intensity Palette as well.
- Individual intensity parameters are treated like all other non-intensity parameters. This means that you can mark the lamps like other fixtures, and a fixture will not be seen as Active if there is no output on the virtual intensity parameter.
Capture

Normally, manual values will be overcome by incoming move instructions from cues. Capture allows several ways to preserve the manual state of channels and parameters through playback.

Temporary (Selection) Capture

Anytime a channel is held on the command line as a selection, its manual values will be preserved in a temporary Capture.

- [Go To Cue] [5] [Enter] [Format], [Scroll Lock] and scroll
- [51] [Thru] [55] [+] [111] [+] [112] [At] [50] [Enter]
- [Clear], clear the command line, [Go] on Cue 7

 To see the following channels
 Place manual changes on several fixtures.
 111 and 112’s incoming values override manual values but 51 thru 55 remain, because there are no new instructions

- [Go To Cue] [5] [Enter]
- [51] [Thru] [55] [+] [111] [+] [112] [At] [50] [Enter]
- Don’t clear the channel selection!! [Go] on Cue 7

 Manual values of selection remain as channels are temporarily captured by the command line.

Command Line Capture

You can select specific channels or parameters to stay Captured. These devices will remain captured until you release them, allowing you to do other tasks that a temporary capture will not allow.

- [Go To Cue] [5] [Enter]
- [111] [+] [112] [At] [5] [Capture] [Enter]
- [Clear], clear the command line, and [Go]

 Place manual changes on channels and captures them. Notice the yellow “C”
 111 and 112’s manual values stay, even though there is an incoming move instruction.
 The captured values remain.

- [Go To Cue] [5] [Enter]
- [111] [+] [112] [At] [75] [Sneak] [5] [Enter]
- [111] [+] [112] [Capture] [Enter]
- [Clear], clear the command line, [Go]

 Captured channels can still have values manually changed, and with sneak, it can be over time.
 Removes the capture
 Incoming levels will now override the manual data
LATCH CAPTURE

By latching Capture on, any manual values that are up, as well as changes that you make will automatically be captured. Turning off Latch Capture will release all captured values, but will leave them manual.

Bring up some manual values.

To clear the command line

Capture Enabled on command line. LED on Capture key lit. All manual values become captured.

Channels automatically become captured.

More channels are captured.

Disables Latch Capture. All manual values get uncaptured.

CAPTURE BEST PRACTICES

- Capture is great for locking in temporary manual overrides. For example, adding area light for a full scene with internal cueing, or putting in key and fill lights over a base look. Once uncaptured, levels will smoothly transition back into the cue hopper on the next move instruction.
Filters

Filters are most effective to execute repetitive record commands that have similar content requirements. Filters will affect recording ANY target including palettes, presets, cues, and submasters. Updates ignore Filter states. Filters are applied in the CIA.

Applying Filters

- Press & Hold [Filter] (Ion: Filter tile in CIA) to enter filter mode
- Touch {Gobo Select} select the categories using parameter tiles – notice the gray ‘N’s
- [111] [Enter] in table view, can see selected parameter

Filters will remain active until cleared. **FILTERS ON** will appear below category names where parameters are active and being recorded. All parameters and categories that will not be recorded are grayed out on the Live display, and the Null “N” will appear. **Any item that is nulled WILL NOT be recorded.** Live output and manual editing will not be affected by filters.

Recording with Filters Active

- [Group] [12] [Enter] records filtered BP – all channels have null value or ‘n’ except Gobo Select
- [Record] [Beam Palette] [11] [Label] OPEN [Enter]
- [Select Last], put Gobo 1 into the gate.
- [Record] [Beam Palette] [12] [Label] Alpha Rays [Enter] records filtered BP – all channels have null value or ‘n’ except Gobo Select
- [Blind] [Beam Palette] [11] [Enter] view filtered BP

Storing Filter States

Filter states can be stored in Snapshots to be easily recalled later.

Clearing Filters

- Press & Hold [Filter], touch {Clear Filters}
 (Ion: Clear Filter tile in CIA and will need to hit Filter again)

removes any filters – no more null values

Filters Best Practices

- Record all of your Filter states to Snapshots. Don’t forget to record a “No Filters” Snapshot to easily turn them off.
Make Null

Using Make Null in Live

In Live, `{Make Null}` is a mask for recording, just like Filters. However, instead of filtering across a parameter type, you can filter individual channels, categories, or parameters. When channel data is nulled, the values for that data in the live display turn grey and an “N” appears next to the data field.

- `{Group} [12] {Make Null} [Enter]` makes all parameters of channels Null, preventing them from being recorded.
- `{Group} [12] {Make Null} [Enter]` makes all parameters of channels Null, preventing them from being recorded.
- `{111} {Color} {Make Null} [Enter]` makes only color parameters Null, and prevents them from being recorded.
- `{111} {Make Null} [Enter]` removes the Null state.
- `{Group} [12] {Position MSpeed} {Color MSpeed} {Beam MSpeed} {Make Null} [Enter]` nulls all of the fixture’s motor speed parameters, so they don’t get stored.
- `{Select Last} {Make Null} [Enter]` removes the Null state.

NOTE: Any `{Go To Cue}` command will remove all Make Null states.

Using Make Null in Blind

In Blind, `{Make Null}` is a playback filter. It can be used to mask instructions in a cue after it has already been stored. When applied to channels/parameters in cues, it doesn’t remove the data from the cue; it simply makes it unavailable for playback. It has the same effect on move instructions that it has on tracked values.

- `{Blind} [Cue] [5] [Enter]` previews the cue.
- `{51} [Thru] [55] {Make Null} [Enter]` makes move instructions null, and prevents track from being played back.
- `{Live} [Go To Cue] [3] [Enter]` notice channels are not marking, because no data is available to be played back in the next cue.
- `{Go} on Cue 4` channels are filtered out of the cue.
- `{Blind} [51] [Thru] [55] {Make Null} [Enter]` removes the Null state.

NOTE: If you null a channel or parameter’s first move in a cue list, it performs the same action as an “At Enter” and removes it. If you do it later in the cue list, it will null it.
Make Manual & Record Only

MAKE MANUAL

Make Manual can be used to convert recorded values back to manual values, for the purposes of easy channel collection. Select Manual, Record Only, and Flexi Manual all rely on this state to grab, view, and store data.

- \[\text{Go To Cue} \quad [102] \quad \text{Enter}\]
- \[\text{Group} \quad [8] \quad \text{Color Palette} \quad [6] \quad \text{Enter} \quad \text{Update} \quad \text{Enter}\]
 - make the top cyc fixtures dark blue, update them into the cue
- \[\text{Select Last} \quad \text{Make Man} \quad \text{Enter}\]
 - converts the values from stored to manual, without changing the data
- Clear Command Line and \[\text{Select Manual}\]
 - selects all channels with manual data, allowing you to continue command line

RECORD ONLY

Record Only takes only Manual values, and allows you to create new targets, such as Presets.

- \[\text{Group} \quad [9] \quad \text{Full} \quad \text{Full}, \text{put blue at 0, put green at 50}\]
 - make the bottom cyc fixtures orange
- \[\text{Record Only} \quad \text{Color Palette} \quad [11] \quad \text{Label Sunset} \quad \text{Enter}\]
 - grabs only manual channels (Group 8 & 9), and stores those into a new target
 - saves the new reference into the cue
- \[\text{Group} \quad [12] \quad \text{Color} \quad \text{Beam} \quad \text{Make Man} \quad \text{Enter}\]
- \[\text{Record Only} \quad \text{Preset} \quad [51] \quad \text{Enter}\]
 - records only manual parameters into the preset
- \[\text{Blind} \quad \text{Preset} \quad [51] \quad \text{Enter}\]
 - look at the data stored for the preset-115

MAKE MANUAL & RECORD ONLY BEST PRACTICES

- At any given time, data is always either Manual or Stored, and it is always either Absolute or Referenced. The desk offers different tools to collect and handle these different data types, and to convert data between them.
Palette & Preset Modifiers

ABSOLUTE PALETTES

When a Palette or Preset is made absolute, the values can no longer be referenced. It cannot be recorded into a cue or nested as a reference – it will always post absolute data when recalled.

```
[Intensity Palette] [Intensity Palette] or Add-a-tab {+}
[Intensity Palette] [2] {Absolute} [Enter]

[Live] [Group] [20] [Intensity Palette] [2] [Enter]

[Clear] [Intensity Palette] [2] {Absolute} [Enter]
```

ABSOLUTE PALETTE BEST PRACTICES

- A great way to use Absolute Palettes is to emulate groups from some of our legacy products.

LOCKED PALETTES

Once a Palette or Preset is locked, data cannot be accidentally modified. It cannot be updated through an Update All command.

To update a locked target from Live, you have to use channel selection and the target in the command line.

```
[Focus Palette] [1] {Lock} [Enter]

[Go To Cue] [102] [Enter]

[Group] [12] [Full] [Full] [Focus Palette] [1] [Enter]

[Record] [103] [Enter]

[Select Last], Move Pan & Tilt

[Update] {All} Look at the Update Dialogue Box [Enter]

[Select Last] [Focus Palette] [1] [Enter] [Update] [Enter]

[Select Last], Move Pan & Tilt

[Select Last] [Update] [Focus Palette] [1] [Enter]

[Clear] [Focus Palette] [1] {Lock} [Enter]
```

LOCKED PALETTE BEST PRACTICES

- Common use of locked palettes is locking them so that when they are stored or nested in a preset, they are not accidently recorded over when you update or record to that preset.
By Type Palettes

By Type palettes are created with “leader” channels, and “follower” channels. The leader contains the data, and all like-fixtures can follow that data to accomplish the same task, like mix to a color.

If **By Type** is used when recording a palette, the lowest number channel of each fixture type will default to the leader channel. Generally, when storing By Type palettes, you will want only one channel of each fixture type selected. Any additional channels in that fixture type will be recorded with discrete data.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Go To Cue] [Out] [Enter]</td>
<td>adds pink down-lights on stage</td>
</tr>
<tr>
<td>[Group] [7] [Full] [Full], make them pink</td>
<td>records the color data into a “By Type” color palette</td>
</tr>
<tr>
<td>[31] [Record] [Color Palette] [21] {By Type} [Enter]</td>
<td>notice blue leader channel and magenta follower channels</td>
</tr>
<tr>
<td>[Blind] [Color Palette] [21] [Enter]</td>
<td>records only the manual color data of the channels into the color palette</td>
</tr>
<tr>
<td>[Live] [Group] [12] [Full] [Full], move color chip wheel to orange</td>
<td>notice the blue leader channel and the white channels that have discrete data</td>
</tr>
<tr>
<td>[Select Last] [Record Only] [Color Palette] [22] {By Type} [Enter]</td>
<td>records color palette with one channel as a leader channel, and the rest with discrete data</td>
</tr>
</tbody>
</table>

Editing By Type Palettes in Blind

In Blind, leader channels are blue, follower channels are magenta, and discrete channels are white.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Blind] [Color Palette] [23] [Enter]</td>
<td>Removes discrete data that is the same as the leader channel, lets channels follow. It will leave discrete data that is different from the leader channel.</td>
</tr>
<tr>
<td>{Cleanup} [Enter]</td>
<td>Makes channel 39 the new leader channel for that fixture type. The old leader will become discrete.</td>
</tr>
<tr>
<td>[39] {By Type} [Enter]</td>
<td>When data is not the same as the leader, the channel becomes discrete.</td>
</tr>
<tr>
<td>[36] {Amber} [50] [Enter]</td>
<td>Changes the levels for the channels to discrete.</td>
</tr>
<tr>
<td>[44] [+][45] {Discrete} [Enter]</td>
<td></td>
</tr>
</tbody>
</table>

![Table of data](image)
UPDATING BY TYPE PALETTES

When updating a By Type palette, it is not necessary to know the leader channel. Select any of the channels and append the `{By Type}` to the command line. The command will not work if the channel selected has discrete timing already associated with it.

- **[Live] [Group] [7], make them green**

 - **[Select Last] [Update] [Color Palette] [21] [Enter]**

 Leader gets updated, but because all channels were selected, all other channels become discrete.

- **[Blind] [Color Palette] [21] [Enter]**

 - **{Cleanup} [Enter]**

 Cleans up the discrete channels.

PALETTE MODIFIER BEST PRACTICES

- By Type Palettes can save you time by allowing you to create content before your full rig is installed. Also when adding new fixtures to your rig, content is already creating
Multipart Cues

Multipart cues can be used to organize multiple channels, and affect their playback attributes as a group. Up to 20 parts in a cue.

MAKE A MULTIPART CUE FROM AN EXISTING CUE IN BLIND

[Go To Cue] [Out] [Enter]
[11] [Thru] [14] [Full] [Full]
[Record] [111] [Enter]
[Blind], [Format]
[12] [Part] [2] [Enter] [Enter]
[13] [Part] [3] [Enter]
[14] [Part] [4] [Enter]

MAKE A MULTIPART CUE FROM AN EXISTING CUE IN LIVE

[Live] [Go To Cue] [5] [Enter]
[56] [Thru] [60] [Record] [Part] [2] [Enter] [Enter]
[Group] [8] {Color} [Record] [Part] [3] [Label] Cyc Move [Enter] [Enter]

CHANGE ATTRIBUTES OF A MULTIPART CUE

[Cue] [111] [Part] [3] [Time] [3] [Enter]
[Cue] [111] [Part] [1] [Delay] [2] [Enter]
[Cue] [111] [Part] [4] [Label] Piano [Enter]
[Go To Cue] [103] [Enter]

MULTIPART CUES BEST PRACTICES

• Unlike discrete timing, Multipart cues show all of their timing information on the surface, and can have labels. This makes complex timing changes easier to identify and track.
• Use parts to group like-types of data together – all channels that are marking, for example.
Multiple Cue Lists

Eos allows up to 999 cue lists in each show file and up to 200 lists active at the same time. Each cue list can have cue numbers from 0.01 to 9999.99. Multiple cue lists can be used to compartmentalize tracked data and play it back concurrently – such as in a multiple programmer situation, or to play back linearly – such as a multiple designer situation.

Record a New Cue List

[Go To Cue] [Out] [Enter]

[Group] [8] [+] [Group] [9] [Full] [Full], set to red

[Record] [2] [/] [1] [Enter]

Creates list 2 and records the data to cue 1 in that cue list.

Note: New cue lists will automatically load to the first empty fader

[Cue] [2] [/] [Label] Cyc Chase [Enter]

Label a full list – not just cue 1 on list.

[Select Last], set to green

[Record] [2] [Enter]

Records cue 2/2.

Note: Look at the command line – it is still pointed to Cue List 2, so simply recording Cue 2 will add it to List 2. If you want it to appear in another list, you need to add the list to the command.

[Select Last], set to blue

[Record] [Next] [Enter]

Records cue 2/3.

Cue List Playback

Note: Fader needs to be at Full position to run the cues.

[Go] (bottom button of fader)

Loads cue 2/1 on stage (additive to other cue list’s contributions).

[Stop/Back] (top button of fader)

Goes back to previous cue (Cue 0 in this case).

[Go To Cue] [2] [/] [2] [Enter]

Loads cue 2/2 on stage.

[Go To Cue] [2] [/] [0]

Sends cue list 2 to Cue 0.
VIEWING MULTIPLE CUE LISTS

[Cue] [1] [/] [Enter] PSD displays cue list 1

Next to the “Cue” header is a padlock.

Unlocked padlock follows the command line.

With the PSD in focus, hit [Format], drag up middle spanner Shows 2 cue lists in the PSD window

Click the padlock in the top cue list.

Locks the top cue list on list 1

[Cue] [2] [/] [Enter] The bottom list follows the command line to list 2

Click the padlock in the bottom cue list.

Ensures that list 2 will stay displayed

Note: It is possible to view more than 2 cue lists – simply open another PSD.

EFFECT CUE LIST

Lists can be triggered in the middle of a main cue list to run an effect.

[Cue] [3] {Link/Loop} [1] [Enter] Links cue 2/3 back to cue 2/1.

[Cue] [1] [/] [101] {Execute} [Cue] [2] [/] [1] [Enter] When cue 1/101 is played, it starts cue 2/1, which then follows into 2/2, 2/3, and then loops indefinitely.

[Cue] [1] [/] [111] {Execute} [Cue] [2] [/] [0] [Enter] When cue 1/111 is played, it plays cue 2/0, stopping the loop.

[Go To Cue] [100] [Enter] Goes to the levels recorded in the list with the most recently executed move instruction.

[Go] on Cue 101

[Go] on Cue 102

[Go] on Cue 103

[Go] on Cue 111

Also runs the exit of the secondary list.

Note: If values are stored for a channel in multiple cue lists, by default the channel goes to the levels recorded in the list with the most recently executed move instruction.

LINEAR LIST PLAYBACK

Lists can be played back linearly, like one cue list. They don’t have to be played in order, making them great for out-of-order or multiple designer events.

[Cue] [2] [/] [1] [Thru] [3] {Follow/Hang} {Link/Loop} [Enter] Remove the hangs/links from List 2 cues.

[Cue] [1] [/] [111] {Execute} [Enter] Removes external link from Cue 111

[Go To Cue] [1] [/] [111] [Enter] Cue 2/1 is pending

[Go] Cue 2/1 is now on the master playback fader with cue 2/2 pending.
UNLOAD A CUE LIST

Press & Hold [Shift], Press the fader’s [Load] button

Unloads the cue list from the fader, but does not delete the contents of the list.

LOAD A CUE LIST

[Cue][2] [/] [Load]

Puts list 2 back on the selected fader.

Note: On a Fader Wing, pressing both top and bottom buttons together achieves the [Load] function.

[Cue][1] [/] [5] [Load]

Puts 1/5 as the pending cue on the main fader pair.

OFF AND RELEASE

- [Off] &[Load] - returns control to the previous state, either a cue or a submaster, and stops any effects that are running on that fader. If there is no background value, the intensities will just fade out.

 [Off][Load]

 Intensities fade out

 [Go]

 Fades from a blackout back into Cue 7

- [Release]&[Load] - behaves like [Off] except that it sets the pending cue to the first cue in the list and removes the active cue.

(Cue 0 on top and cue 1 pending)

[Release][Load]

MULTIPLE CUE LIST PLAYBACK BEST PRACTICES

- [Go To Cue] [0] and [Go To Cue] [Out] are on a list-by-list basis. To reset all cue lists back to cue 0 and send all fixtures home, use [Go To Cue] [Out] on a clear command line.

- There are lots of rules for a multi-list environment. For more information, see the Eos Family Multi-Programmer workbook.
Cue List Index

The Cue List index allows you to view and manage all of the Cue Lists in a show file, and change their behaviors.

[Cue] [Cue] Opens the Cue List Index

FADER TYPE

INTENSITY MASTER

Like a Submaster, Cue lists set to Intensity Master will master just the intensities of the channels on stage.

[Cue] [1] [/] {Fader} Intensity Master [Enter] Intensity Master shows on command line.

[Live], [Go To Cue] [1] [/] [5] [Enter] Only intensities are mastered by the fader pair. Non-intensity parameters stay as they are.

Move the Master Fader pair up and down, watch the levels.

Works like a grand master for the cue that is loaded on the MF pair

MANUAL MASTER

Cue lists set to Manual Master will trigger a Go just by moving the fader in either direction.

[Cue] [Cue] Opens the Cue List Index

[Live], [Go To Cue] [1] [Enter] Cues run at the top and bottom of the fader pair. Timing is controlled based on how fast you move the faders.

Move the Master Fader pair down to run cue 2 and then up to run cue 3, watch the cues play back.

PROPORTIONAL AND MANUAL CONTROL

Proportional is the default fader type. Faders do not affect the playback unless they are at 0%, and a Go is hit, then the faders are in manual mode.

[Cue] [Cue] to get into the Cue List Index

[Cue] [1] [/] {Fader} Proportional Master [Enter] Proportional Master shows on command line.

[Live], [Go To Cue] [5] [Enter] Fader does not affect cue playback

Move the Master Fader pair down halfway, then to 0%. Faders in manual mode, nothing happens

[Go] on Cue 2 with faders at 0% As faders move, cue runs. Cue is released at the top of the movement.

Move the Master Fader pair up

Move the Master Fader pair back down to 0% and hit [Go] To manually take control of another cue
LABEL

A Cue List can take a label. If it is unlabeled, it will take the first cue’s label by default.

[Cue] [Cue]
Opens the Cue List Index

[Cue] [1] [/] [Label] Main List [Enter]
Labels the cue list.

ASSERT

Just like an individual cue, a full cue list can be asserted. It will assert all channels owned by the cue list.

[Cue] [1] [/] [Assert] [Enter]
asserts all channels owned by cue list 1 upon playback

EXTERNAL LINKS

Cue lists can trigger like-numbered cues in other cue lists, for concurrent playback.

[Cue] [1] [/] [Execute] [Cue] [2] [/] [Enter]
Links list 2 to follow list 1’s playback

[Cue] [1] [/] [Execute] [Enter]
Removes the external link

AUTOBLOCK CLEANUP

Autoblocks can be cleaned out of an entire cue list, making data management easier. You can also Autoblock Cleanup in a range of cues.

[Cue] [1] [/] {AutoBlk Clean} [Enter]
Removes all autoblocks from cue list.

Note: Independent, HTP/LTP, and Background all relate to how multiple competing sources gain control of a channel. For more information, reference the Ownership and Arbitration documentation.
Additional Cue Functions

CURVES ON CUES & PARTS

Curves control how a fade executes over time. Curves can not only be pinned to specific channels in Patch, they can also be used to control the fade behavior of a whole cue, or parts of a cue.

APPLYING CURVES TO CUES & PARTS

- `[Live] [Cue] [101] [Curve] [901] [Enter]`
 - All moves in Cue 101 will use Curve 901 for their fade profile.
- `[Cue] [111] [Part] [3] [Curve] [903] [Enter]`
 - Just the channels and parameters in Part 3 of Cue 111 will use Curve 903 for their fade profile.
- `[Cue] [101] [Curve] [Enter]`
 - Removes the Curve

NOTE: To get non-intensity parameters to use a curve, they must be stored in a part, with a curve assigned to it. A standard cue with a curve will apply the curve only to the intensity parameters.

CUE EXECUTE

MACROS

When you trigger a cue, you can also have a macro execute to perform other functions with that [Go].

- `[Cue] [7] [Execute] [Macro] [101] [Enter]`
 - When Cue 7 is triggered, it will also run Macro 101.
- `[Cue] [7] [Execute] [Enter]`
 - Removes Macros being triggered from a cue.

SNAPSHOTS

When you trigger a cue, you can also have a Snapshot execute to change the console displays with that [Go].

- `[Cue] [5] [Execute] [Snapshot] [1] [Enter]`
 - When Cue 5 is triggered, it will also run Snapshot 1.
- `[Cue] [5] [Execute] [Enter]`
 - Removes Snapshots being triggered from a cue.

NOTE: You can have a Cue send UDP strings, trigger show control relays, or run automatically on a timestamp from external time code. Please see the show control workbook for more information.

ADDITIONAL CUE FUNCTIONS BEST PRACTICES

- Having a cue trigger a particular snapshot, like one with a magic sheet or flexi state recorded, can help an operator keep an eye on certain information in critical parts of playback.
- Executing macros can be helpful for things at the top of show – like channel check, lamp strikes, enabling remotes, and setting a standard console snapshot.
Blind Navigation and Editing

Navigation

Navigation in Blind works similarly to other areas of the desk. You have access to Format, Flexi, and paging tools, as well as Data and Time Display options. **[Blind]** is a hard key.

Viewing Other Targets in Blind

When you enter Blind, you always enter into Cue Blind. Blind is also used to view and edit other target data.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Blind], [Format] to Table view</td>
<td>Displays the data stored in color palette 2. You are able to edit this data.</td>
</tr>
<tr>
<td>[Color Palette] [2] [Enter]</td>
<td>Shows only active channels in palette</td>
</tr>
<tr>
<td>[Live] [Color Palette] [Color Palette]</td>
<td>Opens the color palette list. 1 will be automatically selected.</td>
</tr>
<tr>
<td>{Edit}</td>
<td>From a target list, Edit drops you into the blind view of that target</td>
</tr>
<tr>
<td>[Cue] [1] [Enter]</td>
<td>Scroll through targets including parts</td>
</tr>
</tbody>
</table>

Non-Intensity Parameters in Spreadsheet

By default, only intensity parameters are shown in Spreadsheet to save space.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Format] to Spreadsheet view</td>
<td>Opens the color information columns</td>
</tr>
<tr>
<td>Press & Hold [Params]/[Data], Touch {Color}</td>
<td>Shows the color parameters for all channels.</td>
</tr>
<tr>
<td>[36] [Enter]</td>
<td>Hides the Green and Cyan parameters</td>
</tr>
<tr>
<td>Press & Hold [Params] /[Data], deselect {Green} {Cyan}</td>
<td>Hides the color parameters for all channels.</td>
</tr>
<tr>
<td>Press & Hold [Params] /[Data], deselect {Color}</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: By default, encoders are disabled in Blind. To enable use of the encoders, press any of the Encoder Page navigation buttons.
EDITING DATA

Data that is changed in Blind is automatically stored, without the need for a Record or Update command. This makes it extremely fast, but be sure to use caution.

AT ENTER – PALETTES, PRESETS, AND SUBS

[At] [Enter] behind a channel and parameter selection will remove the data that is stored in a target, leaving those parameters as null.

[Blind], [Format] to Table View, [Flexi] to Active

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Color Palette] [1] [Enter]</td>
<td>Displays only the channels with data stored in Color Palette 1</td>
</tr>
<tr>
<td>[111] [Thru] [134] [Enter]</td>
<td>These channels have data for all color parameters, not just CMY.</td>
</tr>
<tr>
<td>[Select Last] [-] {Cyan} [-] {Magenta} [-] {Yellow} [At] [Enter]</td>
<td>Grabs all parameters except Cyan, Magenta, and Yellow, and removes the data from those parameters.</td>
</tr>
<tr>
<td>Scrolling up and down</td>
<td>Shows none of other color parameters affected except 111 - 134.</td>
</tr>
</tbody>
</table>

AT ENTER – CUES

[At] [Enter] in a cue will remove the data stored, but unlike other targets, there are tracking implications when removing data.

[Blind], [Format] to Spreadsheet View, [Flexi] to Active

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Cue] [10] [Enter]</td>
<td>This will display all the cues in spreadsheet, with cue 10 selected.</td>
</tr>
<tr>
<td>[51] [Thru] [55] [At] [Enter]</td>
<td>Removes the move instructions for these channels, and allows the previous data to track forward.</td>
</tr>
<tr>
<td>[Undo] [Enter]</td>
<td>Put the data back.</td>
</tr>
<tr>
<td>[Cue] [12] [Block] [Enter]</td>
<td>Blocks cue 12, ensuring that data changes will not track through.</td>
</tr>
<tr>
<td>[Cue] [10] [Enter]</td>
<td>Removes the move instructions for the channels, and allows the data to track – until encountering the block on cue 12.</td>
</tr>
</tbody>
</table>

NOTE: [At] [Enter] in Live will give you that channel or parameter’s value from the previous cue, in a manual state. Updating the cue will result in a tracked value from the previous cue – the same as removing the move instruction in blind.
RANGE EDITING

You can edit over a range of cues, including overwriting cues with move instructions. Just like any edit, there are tracking implications when changing data.

Still in Blind Spreadsheet, [Cue] [3] [Thru] [7] [Enter]

Selects a range of cues.

[51] [Thru] [55] [At] [75] [Enter]

Puts a move instruction in the first cue, tracks that value through the range, and continues the track until the next move instruction outside of the range.

[Undo] [Enter]

Put the data back.

[51] [Thru] [55] [At] [75] [Cue Only] [Enter]

Puts a move instruction in the first cue, tracks that value through the range, but stops the track outside of the selected cue range.

MOVING CUES

Just like any edit, there are tracking implications when moving cues.

[Cue] [8] [Copy To] [Copy To] [0] [.] [5] [Enter] [Enter]

Look at channels 51 thru 67 – they tracked into cues 1 and 2.

[Undo] [Enter]

Put the data back.

[Cue] [8] [Copy To] [Copy To] [0] [.] [5] [Cue Only] [Enter] [Enter]

Look at channels 51 thru 67 – they do not track past the new cue 0.5.

NOTE: You can move ranges of cues, with the same tracking or cue only behavior as moving a single cue.

REPLACE WITH

You can find values across ranges of cues and replace them with new values.

[Cue] [1] [Thru] [14] [Enter]

Selects the cue range.

[1] [Thru] [67] [At] [75] (Replace With) [80] [Enter]

Finds all values that are 75, and replaces them with values of 80.

NOTE: Replace With works with palettes and presets as well. You can also command line filter to specific parameters for more control.

BLIND BEST PRACTICES

• If a cue on stage is edited in Blind (either through cue changes or referenced data changes), the cue must be reloaded on stage. Sub edits in Blind are immediately changed in Live.
Macros

A Macro is an automated series of console actions. Macros are a way to automate complex or hard-to-reach commands in the desk.

LEARN A MACRO

[Live] [Learn] [1] [Enter]

Placed console in Learn mode, button flashes green, “Learning Macro 1” flashes above CIA command line.

[Stop Effect] [Enter] then hit [Learn]

Records macro 1 with the ‘Stop Effects’ command.

CALLING A MACRO

[Clear] [Macro] [1] [Enter]

Plays back Macro 1.

NOTE: In addition to calling a macro on the command line, they can be called by a macro direct select or magic sheet button, a cue execute, an system command, or a connected show control system.

MACRO EDITOR DISPLAY

The Macro editor display allows you to edit macros, and access softkeys that aren’t available from all areas of the desk.

[Macro] [Macro]

Opens macro editor

[1] [Label] Stop FX [Enter]

Label the macro

With Macro 1 selected, press {Edit} or [Learn]

Enters Edit mode for the macro.

NOTE: Cursor can be moved using page left and right keys.

NOTE: In Edit mode, only your page arrow keys, Escape, Select, and softkeys will not post to the Macro. All hard keys and CIA softkeys will post into the macro, and play back each time the macro is called.

{Done} or [Learn]

Exits Edit mode for the macro.

MACRO MODES

Macros can be called to run on or off the command line.

- **Foreground** – Macro commands post to the command line. Because devices with the same user share a command line, it will run on all devices with the same user.
- **Background** – Macro commands run, but do not post to the command line. Only runs on the device where it is called.
- **Default** – If called manually (by a programmer calling the macro), it will post as Foreground. If called by an execute or by the system (like a cue or via show control), it runs as Background.

CHANGING A MACRO MODE

[1] {Macro Mode} * [Enter]

*Keep pressing {Macro Mode} until the desired mode is on the command line.
MACRO EXERCISE – ENABLE/DISABLE REMOTES

Let’s create macros that allow the remotes connected to the desk to be enabled or disabled easily and predictably.

Go to Setup -> Desk Settings -> RFR Settings

<table>
<thead>
<tr>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts learning Macro 51.</td>
<td>[Learn] [51] [Enter]</td>
</tr>
<tr>
<td>Learns toggling RFR Connections setting, stops learning the Macro.</td>
<td>Touch {Allow RFR Connections}, [Learn]</td>
</tr>
<tr>
<td>Run the macro and see the toggle</td>
<td>[Macro] [51] [Enter]</td>
</tr>
</tbody>
</table>

This macro will toggle the remote connection setting – making it unclear what state the remotes may be in. Let’s make this macro always enable the remotes, regardless of the setting’s state.

<table>
<thead>
<tr>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go into the macro editor, with macro 51 selected.</td>
<td>[Macro] [Macro] [51] [Enter]</td>
</tr>
<tr>
<td>Enters Edit mode.</td>
<td>{Edit}</td>
</tr>
<tr>
<td>Removes command, cleans up macro.</td>
<td>With “Clear_CmdLine” highlighted, press {Delete} softkey</td>
</tr>
<tr>
<td>In Edit mode, the [Delete] hard key will post into the macro. Always use the softkey.</td>
<td>NOTE:</td>
</tr>
</tbody>
</table>

- **Arrow right until “◆” (Enter command) is highlighted**
- **In CIA softkeys, find and touch {Enable}**
- **Press {Done}**
- **Label the macro.**
- **Force the macro to fire without interrupting the command line.**

The macro to enable the remotes is complete. Let’s make the disable macro.

<table>
<thead>
<tr>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copies the macro.</td>
<td>[51] [Copy To] [52] [Enter]</td>
</tr>
<tr>
<td>Enters Edit mode.</td>
<td>{Learn}</td>
</tr>
<tr>
<td>Removes the Enable command.</td>
<td>Arrow right until “Enable” is highlighted, press {Delete}</td>
</tr>
<tr>
<td>The macro should read “RFR Disable ◆”</td>
<td>In CIA softkeys, find and touch {Disable}</td>
</tr>
<tr>
<td>Exits Edit mode.</td>
<td>Press {Done}</td>
</tr>
<tr>
<td>Label the macro.</td>
<td>[Label] Remotes Off [Enter]</td>
</tr>
</tbody>
</table>

GO TEST THE MACRO!

<table>
<thead>
<tr>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>To watch the macros</td>
<td>Go to Setup -> Desk Settings -> RFR Settings</td>
</tr>
<tr>
<td>Run the macro and no toggle</td>
<td>[Macro] [51] [Enter]</td>
</tr>
<tr>
<td>Run the macro and remote is disabled</td>
<td>[Macro] [52] [Enter]</td>
</tr>
</tbody>
</table>
Intermediate Magic Sheets

Open the Magic Sheet tab by either using the {+} Add-A-Tab button, or by pressing [Displays] {Magic Sheet} [Enter].

Before you begin, your Magic Sheet should look something like this:

You can create multiple of the same type of object quickly, using the Array tool.

Open the Editor by clicking the Cheveron on the right of the Magic Sheet tab

In the object library, select the Color Palette object, and drop it below the existing Red Color Palette button

With the Color Palette object still selected, change Field 3 to Label.

With the Color Palette object still selected, Click on the Alignment tool, and then Create Array.

In the Array Settings window, change the amount of rows to 5. Click OK.
Your Magic Sheet should look something like this:

![Magic Sheet Image]

ADDITIONAL OBJECT EDITING TOOLS

PALETTE/PRESET OBJECT COLOR AUTO-FILL

Objects that are set as Palettes or Presets can have their fill color automatically populated. When the object’s fill color is linked to channel color, the object’s fill will take on the color data of the LAST channel stored in the target.

With all the Color Palette objects selected, open the Background Color, and click Link to Channel Color.

Close the editor, and look at the Color Palette objects.

NOTE: You can do the same trick with the object’s line color.

OBJECT GROUPS

Objects can be grouped for easier handling.

In the Magic Sheet Editor, Select all of the Color Palette objects

Click on the Ordering tool, and click Group.

Move the Color Palette objects around – they move together.

To Ungroup, click on the Ordering tool, and click Ungroup.

NOTE: Objects cannot be edited when they are in a group. To edit, ungroup the object, and re-group when finished.
CONSOLE BUTTON OBJECTS

Objects can be assigned to console button functions, so you don’t need to have a keypad.

Add a Square object above the fixtures and make it a rectangle.

Change the Object target type to Console Button.

Choose Full from the dropdown menu.

Change Field 1 to be Target Name.

Change Font to 25.

With the Full button still selected, press Ctrl & C, then Ctrl & V, to copy and paste the button, then move it next to the Full button.

Paste two buttons, for a total of 3.

Change the second button to be Out.

Change the third button to be Clear Cmd.

MACRO OBJECTS

Macros can be assigned to objects, to make complex functions easily accessible.

Place a Circle object below the Effect circle.

Make the fill red.

Change the object target type to Macro, Target 1.

Change Field 1 to Target Name.

Change Field 2 to Target ID.

Change Field 3 to Label.

Your Magic Sheet should look something like this:

Close the Editor, [Go To Cue] [Out] [Enter], and play!
MAGIC SHEET NAVIGATION OBJECTS

Objects can assigned to Magic Sheet navigation functions, so you can easily change views, or navigate between Magic Sheets.

NAVIGATE BETWEEN VIEWS

Close the Editor, open the Magic Sheet tool bar, and Zoom To All

[Record] [Displays] {Magic Sheet} [1] [/] [1] [Enter]

Zoom in until the Direct Selects fill the screen.

[Record] [Displays] {Magic Sheet} [1] [/] [2] [Enter]

In the Magic Sheet tool bar, scroll through views.

Open the Editor.

Insert a Square object next to the direct selects,

Change the target type to Magic Sheet.

Make the Target ID is 1/2.

Select Target Name for Field 1, and Target ID for Field 2.

Change the bottom-right color palette to target type of Magic Sheet, and Target ID 1/1.

Close the Editor.

Use the Magic Sheet button.

NAVIGATE BETWEEN MAGIC SHEETS

Start a new Magic Sheet – open the Magic Sheet Browser, or type [Displays] {Magic Sheet} [2] [Enter]

Insert a Square Object, change the target type to Magic Sheet.

Make sure the Target ID is 1.

Select Target Name for Field 1.

Select Target ID for Field 2.

Close the editor. Click on the Magic Sheet button.

INTERMEDIATE MAGIC SHEETS BEST PRACTICES

- You can create a “Navigation Pane” in one magic sheet, and then copy it between magic sheets or views, so you don’t have to recreate it.
Important Concepts

Having gone through all three workbooks and training videos, you should have a solid understanding of the basics of the Eos family of control. These materials are only a starting place. There are more topics covered in the operations manual and special topics workbooks. This is a recap of some of the concepts you’ve now covered.

It is worth noting that while these workbooks and accompanying videos cover basic operation – there are more advanced functions of the desk not addressed in these materials. Please see the operations manuals for more detail on these topics. Special topics videos and workbooks are also available or are in development.

Console Philosophy

Eos is a Tracking/Move Fade desk. Tracking is a description of how the system handles data modifications. Move Fade describes how playback ownership is arbitrated. Working quickly and efficiently requires an in-depth understanding of how these concepts are applied.

Tracking Versus Q Only

Eos family consoles, by default, are tracking desks. This means that any new or modified data automatically tracks forward through a cue list until a change or a block is encountered. This behavior can be modified via record/record only/update with the Q Only/Track button. Additionally, a setup option lets you default the behavior to Q Only. In that case, the Q Only/Track button will force a track. The easiest way to get a full grasp of tracking is to go to blind spreadsheet and start modifying cue data, watching the behavior in subsequent cues.

Move Fade

Eos family consoles are move fade desks. This means that when running cues sequentially, only move instructions are recalled. Cue list ownership is changed via move instructions. Assert (see below) is a way to override that behavior. Out of sequence cues (go to cue, linked cues, loading new

Record/Record Only/Update

Record stores all parameter data for any channels that are in use. In use means any channel data that is not at its home position in grey.

Record Only stores only manual parameters. It is the equivalent of storing from the programmer on other desks. If referenced data has been applied and manually modified, record only also breaks references.
Update is similar to record only, in that only manual changes are stored. It differs from Record Only in that you can only update to existing record targets. Update also automatically stores data back to the cue list its data is owned by. Updating to a single cue list leave channels owned by other cue lists manual. New content (no owner) is always updated to the selected cue list. Multiple update options for controlling reference modifications are provided.

Range record and updates can be done. Do you know about the trace key? If not, go read about it.

Block Versus Assert

Both Block and Assert are functions that manage tracked data. Block is a way to take a tracked value and have it treated as a move instruction in terms of editing data. A change upstream will not track into a blocked bit of data. If you change the value upstream, Eos will convert the block into a move instruction. Blocks can be applied at a cue, cue part, channel and parameter level. Cue level blocks can be full blocks (apply to all tracked data) or just Intensity Blocks, which are applied only to tracked intensity values.

Assert is the playback equivalent of block – in that it treats a tracked value like a move instruction. Example:

- **Cue 1** – channel 1 at full. It tracks at full to cue 10, where you change it to 50.
- **Cue 2/1** – channel 1 at 25. It tracks at 25 until 2/10, where you change it to 75.
- Hit Go to execute Cue 1. Channel 1 is at full.
- Hit Go to execute Cue 2. Channel 1 remains at full.
- Hit Go to execute Cue 2/1. Channel 1 fades to 25.
- Hit Go to execute Cue 3. Channel 1 remains at full. Cue 3 has a track for this channel. As such, it will not regain ownership.
- Now, Apply an assert to cue 3. (Cue 3 Assert Enter)
- Run the sequence again.
- Now, when you hit go to run cue 3, the channel will fade back to full.

Asserts can be applied at a cue, cue part, channel or parameter level. A assert can also be placed on the entire cue list.

A word about auto-blocks. Sometimes you may see a block (data displayed in white) with an underscore. This means Eos has applied an auto-block – which is automatically done whenever a move instruction is later matched with a level upstream. Example:

- **Cue 1** – channel 1 at full. Tracks to cue 10. In cue 11, set channel 1 to 50, which is displayed in green as a down move on intensity. At some point, in cue 5, change channel 1 to 50 and allow that change to track forward. You will know see, in cue 11, channel 1 in white (at 50) with an underscore. That is an auto-block. You had a move instruction there and the auto-block is a way Eos protects the idea of that move instruction. An auto-block clean up function is provided.

Blocks, partial blocks and auto-blocks are all indicated in the PSD.
MARK

Eos provides two ways to mark (preset) non-intensity data. You can always do it the old-fashioned way — of coping data back to an earlier cue. But that is painful to maintain.

Auto-mark. By default, this is disabled. When auto-mark is enabled, Eos will automatically preset any non-intensity parameters in the immediately preceding cue, provided the light is not active (has intensity). Auto-mark can be disabled on a cue or cue part basis, allowing a live move.

Referenced mark. This allows the programmer full control over when the NPs preset. When you make a light active, adjust its NPs, all you have to do is enter [Mark] [x] [Enter] on the command line and store the cue. This presets the NPs for the channels selected to the required cue. The actual move instruction is still stored in the source cue (as indicated in the PSD by an “R” in the mark field) — so you can still do all of your edits in the cue the light is made active. A number of mark earliest commands are available. If you add discrete timing in the source cue, that is the timing the lights will use to mark. Otherwise, they will cue the time of the cue they are marking in (the M cue) or the mark time established in setup if there is one.

If you use a light in a marked state (break the mark) Eos will still try to mark it if possible. That is what the X indicates.

In the PSD — keep an eye out for Ls and D in the MV field. L means you have a live move — light is coming active and moving NPs. Did you forget to mark it or is that what you want? D means you have a dark move — that is probably an unneeded move, which you want to avoid if possible (why create noise when you don’t need to?). About tells you what lights have live and dark moves to facilitate clean up if desired.

HTP VERSUS LTP

HTP and LTP describe how a channel parameter behaves if getting more than one instruction. HTP is highest takes precedence and LTP is latest takes precedence. Non-intensity parameters are always LTP. Intensity can be either. Cue lists default to LTP for intensity and subs to HTP, but those properties can be changed.

PLAYBACK OWNERSHIP

Ownership defines what playback — cues or subs — is providing the current instruction to a channel parameter. Ownership is determined by a combination of LTP/HTP, move instructions, assert flags and priority. Manual instructions override playback, but will be released to a playback on the next move instruction provided unless captured.
Referenced Data

This refers primarily to IFCB Palettes and Presets. A number of tools are provided for controlling what is stored to them, how they are edited, breaking references to them and so forth. Display options for viewing references by label or by number are provided, with a live mode toggle state for the alternate view. Data can be used to see absolute values – which are also exposed in about.

Selective Storing

Selective Storing refers to the ability to control what is stored to what record targets. At the most macro level, this starts with Record and Record Only. Additionally, filters can be applied to withhold entire categories or parameters. Selective storing from the command line can also be used. This includes additive (channels 1 thru 5 Intensity Record x enter or Color Record x enter) as well as subtractive (-zoom record x enter).

Timing, Delay, Block and Assert Hierarchy

<table>
<thead>
<tr>
<th>Location</th>
<th>Time</th>
<th>Delay</th>
<th>Assert</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cue List</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cue</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cue Category (IFCB)</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cue Part</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cue Part Category (IFCB)</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discrete Level: does need record or update

<table>
<thead>
<tr>
<th>Location</th>
<th>Time</th>
<th>Delay</th>
<th>Assert</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Channel Category (IFCB)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Parameter</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Vague

Specific
Appendix 1 – Custom Fixture Profiles

NOTE: This exercise matches fixtures in the Eos Family Learning Series visualizer. Upon successful completion of this exercise, you should be able to fully control the fixtures.

CREATING A NEW FIXTURE PROFILE:

You can create a new fixture profile for use with a fixture that is not in the library.

In Patch, and press Fixtures

In the Fixture Profile Manager, press {New} Creates a new Fixture Profile called “New Fixture (1).”

With “Custom Mover” selected, press {Edit} Takes you into the profile editor.

The Fixture Profile Editor has several columns:

• **Number** – The parameter number (always in order)
• **Parameter** – allows you to define which parameter is in that profile slot. Defaults will appear as you add parameters, but you can change them at any time.
• **Size** – define the parameter as 8-bit (using 1 DMX address, or 256 steps) or 16-bit (using 2 DMX addresses, or 65,536 steps)
• **DMX** – allows you to set the DMX value for the parameter. This is not the DMX address, but rather an offset to the start address of the fixture. In 16-bit parameters, this is the Coarse DMX value. For virtual parameters, this will remain empty.
• **LDMX** – stands for “Low-DMX,” and is the Fine DMX value for 16-bit parameters. For 8-bit parameters and virtual parameters, this will remain empty.
• **Home** – This is the home value of the parameter, in DMX step values. For 8-bit parameters, the range is 0-255 with 128 as center. For 16-bit parameters the range is 0-65,535 with 32,768 as center.
• **Snap** – if snap is enabled on a parameter, it will always snap to a new position, and not use fade timing. This is to prevent scrolling through unwanted parts of the parameter, like on a gobo wheel.
• **Ranges** – much like a custom scroller load, you can define the operational ranges for specific slots within a parameter. For example, if the fixture includes a four-slot gobo wheel, you can use ranges to determine the minimum/maximum values for each of those slots. You can also label the slots and define the minimum/maximum values that will appear in the channel display.
ADDING PARAMETERS TO THE FIXTURE PROFILE:

- **Keep Intensity as Parameter #1.**
 - Intensity was auto-added at the creation of a new fixture profile.

- **Press {New}. Keep Pan as Parameter #2.**
 - Adds a second parameter.

- **Press {Size} to make the Parameter 16-bit. Check that DMX is 2, and LDMX is 3.**
 - Changes Pan to a 16-bit Parameter. The console helps with auto-addressing the DMX and LDMX.

- **Click in the “Home” cell of Pan, or use the arrows to move to the home column and set the value at 32,768.**
 - Sets the home value for Pan at 50%.

- **Press {New}. Keep Tilt as Parameter #3.**
 - Adds a third parameter.

- **Press {Size} to make the Parameter 16-bit. Check that DMX is 4, and LDMX is 5.**
 - Changes Tilt to a 16-bit Parameter. The console helps with auto-addressing the DMX and LDMX.

- **Set the home value of Tilt at 32,768.**
 - Sets the home value for Tilt at 50%.

- **Press {New}. Width is incorrect.**
 - The console has assumed the wrong parameter for the new fixture.

- **Press {Parameters}**
 - The list of all available parameters appears. The buttons on the left allow you to filter them by category.

- **Find and click “Edge”. Check that DMX is set to 6.**
 - Sets the parameter to Edge, and returns you to the profile editor.

- **Press {New}**
 - To see the list of available parameters.

- **Find and click “Zoom”. Check that DMX is set to 7.**
 - Sets the parameter to Zoom

- **Press {New}**
 - To see the list of available parameters.

- **Press {Parameters}**
 - To see the list of available parameters.

- **Find and click “Diffusion”. Check that DMX is set to 8.**
 - Sets the parameter to Diffusion
Adding Color Parameters to the Fixture Profile:

Press {New}

Press {Parameters} To see the list of available parameters.

Find and click “Cyan”. Check that DMX is set to 9. Sets the parameter to Cyan

Press {New}

Press {Parameters} To see the list of available parameters.

Find and click “Yellow”. Check that DMX is set to 10. Sets the parameter to Magenta

Press {New}

Press {Parameters} To see the list of available parameters.

Find and click “Magenta”. Check that DMX is set to 11. Sets the parameter to Yellow

Notice that parameter numbers 10-12 are automatically added as Hue, Saturation, and Brightness. Because we added all the parameters of a complete color system (CMY in this case), the board adds virtual color control parameters. These do not need any DMX values as they are not in the fixture.

Adding Ranges to a Parameter:

Press {New} The console has assumed the wrong parameter for the new fixture.

Press {Parameters} To see the list of available parameters.

Find and click “Gobo Select”. Check that DMX is set to 12 and that Snap is enabled. Sets the parameter to Gobo Select, and returns you to the profile editor. The default for Snap is Enabled.

Press {Ranges} Takes you into the range editing table.

Min and **Max** are DMX values, while **User Min** and **User Max** are the values displayed. **Label** is displayed on the encoders or in displays. Use the arrow keys to move through the table faster.

Complete the Ranges table.

<table>
<thead>
<tr>
<th>Number</th>
<th>Min</th>
<th>Max</th>
<th>User Min</th>
<th>User Max</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>Open</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>29</td>
<td>1</td>
<td>2</td>
<td>Gobo 1</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>52</td>
<td>2</td>
<td>3</td>
<td>Gobo 2</td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>74</td>
<td>3</td>
<td>4</td>
<td>Gobo 3</td>
</tr>
<tr>
<td>5</td>
<td>75</td>
<td>97</td>
<td>4</td>
<td>5</td>
<td>Gobo 4</td>
</tr>
<tr>
<td>6</td>
<td>98</td>
<td>117</td>
<td>5</td>
<td>6</td>
<td>Gobo 5</td>
</tr>
<tr>
<td>7</td>
<td>118</td>
<td>127</td>
<td>6</td>
<td>7</td>
<td>Open</td>
</tr>
</tbody>
</table>

When finished, click {Return}.
VIRTUAL PARAMETER MODES:

Many parameters have modes, which is to say the parameter's behavior is different from one DMX range to another. The console allows you to define these in a virtual parameter.

In the Profile Editor, Press {New}

The console adds has assumed the wrong parameter for the new fixture.

Press {Parameters}

To see the list of available parameters.

Find and click “Gobo Mode.” Set DMX to 0

As a virtual parameter, there should be no DMX value going to the fixture.

Press {Ranges}

Takes you into the range editing table.

Complete the Range table below. When finished, click {Return}.

<table>
<thead>
<tr>
<th>Number</th>
<th>Min</th>
<th>Max</th>
<th>User Min</th>
<th>User Max</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>126</td>
<td>0</td>
<td>1</td>
<td>Index</td>
</tr>
<tr>
<td>2</td>
<td>127</td>
<td>255</td>
<td>1</td>
<td>2</td>
<td>Rotate</td>
</tr>
</tbody>
</table>

* If you have a message that ranges can not overlap, press {Cancel} and the range will be accepted.

COMPLETE THE FIXTURE PROFILE:

Fill in the rest of the parameters as detailed in the table. When finished with the fixture, click {Return}.

<table>
<thead>
<tr>
<th>#</th>
<th>Parameter</th>
<th>Size</th>
<th>DMX</th>
<th>LDMX</th>
<th>Home</th>
<th>Snap</th>
<th>Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Gobo Index/Speed</td>
<td>16BITS</td>
<td>13</td>
<td>14</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Iris</td>
<td>8BITS</td>
<td>15</td>
<td></td>
<td>255</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Position MSpeed</td>
<td>8BITS</td>
<td>16</td>
<td></td>
<td>255</td>
<td>Enabled</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Color MSpeed</td>
<td>8BITS</td>
<td>17</td>
<td></td>
<td>255</td>
<td>Enabled</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Beam MSpeed</td>
<td>8BITS</td>
<td>18</td>
<td></td>
<td>255</td>
<td>Enabled</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Lamp Control*</td>
<td>8BITS</td>
<td>19</td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE: Lamp Control is found under the Control category. A warning appears to remind us that control parameters like lamp control can not be viewed or edited in Live or Blind, but are accessed thru the Control options in About. Press [OK].

NOTE: For fixtures that use a Lamp Control parameter, custom Lamp Control Macros can be created in the (Lamp Control) area, once a Lamp Control parameter has been added.
PATCH THE CUSTOM FIXTURE:

Don’t forget to patch the fixture once you’ve created the profile. Custom fixture profiles appear under the manufacturer “Custom.” For the training visualizer, patch the following fixtures:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Universe</th>
<th>Address</th>
<th>Manufacturer</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>141</td>
<td>2</td>
<td>451</td>
<td>Custom</td>
<td>Custom Mover</td>
</tr>
<tr>
<td>142</td>
<td>2</td>
<td>470</td>
<td>Custom</td>
<td>Custom Mover</td>
</tr>
</tbody>
</table>

NOTE: With any custom fixture profile, be sure to leave yourself time to run through each parameter with the actual fixture, to make sure things are operating as expected before you start programming.

CHECK THE FIXTURE IN LIVE:

[Live] [141] [+] [142] [Full] [Full] and test the fixtures

May need to swap pan and tilt
Full Fixture Profile Table

<table>
<thead>
<tr>
<th>Number</th>
<th>Parameter</th>
<th>Size</th>
<th>DMX</th>
<th>LDMX</th>
<th>Home</th>
<th>Snap</th>
<th>Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intensity</td>
<td>8BITS</td>
<td>1</td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Pan</td>
<td>16BITS</td>
<td>2</td>
<td>3</td>
<td>32768</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Tilt</td>
<td>16BITS</td>
<td>4</td>
<td>5</td>
<td>32768</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Edge</td>
<td>8BITS</td>
<td>6</td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Zoom</td>
<td>8BITS</td>
<td>7</td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Diffusion</td>
<td>8BITS</td>
<td>8</td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Cyan</td>
<td>8BITS</td>
<td>9</td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Yellow</td>
<td>8BITS</td>
<td>10</td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Magenta</td>
<td>8BITS</td>
<td>11</td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Hue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Saturation</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Brightness</td>
<td></td>
<td></td>
<td></td>
<td>255</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Gobo Select</td>
<td>8BITS</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range Table</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Number</td>
<td>Min</td>
<td>Max</td>
<td>User Min</td>
<td>User Max</td>
<td>Label</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 10 29 1 2</td>
<td>Open</td>
<td>1</td>
<td>Gobo 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30 52 2 3</td>
<td>Gobo 2</td>
<td>2</td>
<td>Gobo 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53 74 3 4</td>
<td>Gobo 3</td>
<td>3</td>
<td>Gobo 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>75 97 4 5</td>
<td>Gobo 4</td>
<td>4</td>
<td>Gobo 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>98 117 5 6</td>
<td>Gobo 5</td>
<td>5</td>
<td>Gobo 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>118 127 6 7</td>
<td>Open</td>
<td>6</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Gobo Mode</td>
<td>8BITS</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Range Table</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Number</td>
<td>Min</td>
<td>Max</td>
<td>User Min</td>
<td>User Max</td>
<td>Label</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 126 0 1</td>
<td>Index</td>
<td>1</td>
<td>Index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Gobo Index/Speed</td>
<td>16BITS</td>
<td>13</td>
<td>14</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Iris</td>
<td>8BITS</td>
<td>15</td>
<td></td>
<td>255</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Position MSpeed</td>
<td>8BITS</td>
<td>16</td>
<td></td>
<td>255</td>
<td></td>
<td>Enabled 1</td>
</tr>
<tr>
<td>18</td>
<td>Color MSpeed</td>
<td>8BITS</td>
<td>17</td>
<td></td>
<td>255</td>
<td></td>
<td>Enabled 1</td>
</tr>
<tr>
<td>19</td>
<td>Beam MSpeed</td>
<td>8BITS</td>
<td>18</td>
<td></td>
<td>255</td>
<td></td>
<td>Enabled 1</td>
</tr>
<tr>
<td>20</td>
<td>Lamp Control</td>
<td>8BITS</td>
<td>19</td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Appendix 2 - Lightwright Import

Lightwright files can be imported into Eos using the {Displays} {File} {Import} {Lightwright}.

Lightwright files are a **tab separated** ASCII text files with column headers defining the data. Each row is typically one control channel for a fixture. At this time Eos only imports conventional fixtures and not all columns can be imported.

The column headers are interpreted as follows:

<table>
<thead>
<tr>
<th>LightWright Header</th>
<th>Eos Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Type</td>
<td>Only devices with type “Light” are imported.</td>
</tr>
<tr>
<td>Channel</td>
<td>Channel number</td>
</tr>
<tr>
<td>Dimmer</td>
<td>Dimmer number (Address)</td>
</tr>
<tr>
<td>Purpose</td>
<td>Notes Field</td>
</tr>
<tr>
<td>Circuit Name</td>
<td>Text 1 Field</td>
</tr>
<tr>
<td>Circuit Number</td>
<td>Text 2 Field</td>
</tr>
<tr>
<td>Color</td>
<td>Text 3 Field</td>
</tr>
<tr>
<td>Template</td>
<td>Text 4 Field</td>
</tr>
</tbody>
</table>

When exporting the file from LightWright, make sure select the following items:

- **Export File Type**: Tab Separated
- **Export only selected worksheet rows**: None
- **Cancel**: Cancel
- **OK**: OK

NOTE: A conventional fixture is patched for each conventional fixture in the file. In some cases the fixture appears more than once in the file. Only the first instance is used in the console.

NOTE: You MUST export ALL of the above fields from Lightwright.

NOTE: If using Lightwright 3, you have to add the “.txt” extension to the exported file’s name.